Code
import requests
import urllib3
urllib3.disable_warnings()
def fetch_uniprot_data(uniprot_id):
url = f"https://rest.uniprot.org/uniprotkb/{uniprot_id}.json"
response = requests.get(url, verify=False) # Disable SSL verification
response.raise_for_status() # Raise an error for bad status codes
return response.json()
def display_uniprot_data(data):
primary_accession = data.get('primaryAccession', 'N/A')
protein_name = data.get('proteinDescription', {}).get('recommendedName', {}).get('fullName', {}).get('value', 'N/A')
gene_name = data.get('gene', [{'geneName': {'value': 'N/A'}}])[0]['geneName']['value']
organism = data.get('organism', {}).get('scientificName', 'N/A')
function_comment = next((comment for comment in data.get('comments', []) if comment['commentType'] == "FUNCTION"), None)
function = function_comment['texts'][0]['value'] if function_comment else 'N/A'
# Printing the data
print(f"UniProt ID: {primary_accession}")
print(f"Protein Name: {protein_name}")
print(f"Organism: {organism}")
print(f"Function: {function}")
# Replace this with the UniProt ID you want to fetch
uniprot_id = "Q9NR96"
data = fetch_uniprot_data(uniprot_id)
display_uniprot_data(data)UniProt ID: Q9NR96
Protein Name: Toll-like receptor 9
Organism: Homo sapiens
Function: Key component of innate and adaptive immunity. TLRs (Toll-like receptors) control host immune response against pathogens through recognition of molecular patterns specific to microorganisms. TLR9 is a nucleotide-sensing TLR which is activated by unmethylated cytidine-phosphate-guanosine (CpG) dinucleotides (PubMed:14716310). Acts via MYD88 and TRAF6, leading to NF-kappa-B activation, cytokine secretion and the inflammatory response (PubMed:11564765, PubMed:17932028). Controls lymphocyte response to Helicobacter infection (By similarity). Upon CpG stimulation, induces B-cell proliferation, activation, survival and antibody production (PubMed:23857366)